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The cumulative distribution of the number of secondary electrons in a single-stage 
photomultiplier is calculated by numerically integrating the inversion integral for its 
probability generating function along a suitably chosen contour. A residue series applicable in 
certain cases is also presented. Saddlepoint approximations to the contour integral are 
described, which are the more accurate, the greater the numbers of secondaries. Recurrent 
relations are developed for computing values of the distribution for purposes of comparison. 
Computation of the Neyman Type-A distribution is treated as a limiting case. 

I. PARTICLE MULTIPLICATION 

(a) Introduction 

The particle-counting distributions with whose computation this paper is concerned 
are exemplified by that of the output of a photomultiplier with a single stage of 
multiplication. In this device primary photoelectrons, driven out by incident light, are 
accelerated in an electric field and impinge on a surface from which they eject 
secondary electrons. Let Xi be the number of secondary electrons ejected by the jth 
primary electron. Then if k primary electrons strike the surface during a fixed interval 
(0, 7’), the total number of secondary electrons is 

k 

The number k of primary electrons is a random variable with probability generating 
function (p.g.f.) 

f(Z) = -? nkZk, 
k=O 

(1.2) 
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where 17k is the probability that k primary photoelectrons strike the surface. Let the 
numbers xi of secondary electrons be independent and identically distributed random 
variables with probabilities Pr(xj = m) = JI$’ and p.g.f. 

g(z) = G pjns’zM. 
h-Z0 

Then the p.g.f. of the total number n of secondary electrons counted during (0, T) is 

h(z)= f Pnf =f(g(z)>v (1.4) 
It=0 

where p, is the probability that the total number of secondaries equals n [ 11. 
Although the probability distribution {p,} may be of interest in comparing theory 

with experiment, the cumulative probabilities 

n-1 

Q, = 1 P,,,, n = 1, 2,..., 
Pll=O 

and their complements 

~,+=l-Q,= f Pm, 
m=n 

(1.5) 

(l-6) 

are generally more useful because they characterize the performance of devices in 
which some action is triggered when the number n of particles exceeds a certain bias 
level. False-alarm and detection probabilities in optical- and particle-detection 
systems and error probabilities in optical communications are directly related to the 
cumulative distribution, and it is the computation of this distribution that will be 
studied here. We call Q; and Q,’ the “tail probabilities.” Their generating functions 
are 

H-(z)= F Q,+$, 

fl=O 
(1.7) 

in terms of the p.g.f. h(z). 
Multiplicative processes such as this occur in many other contexts as well. A 

review has recently been given by Teich [2], who mentions applications to biology, 
medicine, cosmology, geophysics, and operations research. The probabilities p,, and 
the tail probabilities Q; and Q,’ must usually be determined by numerical methods, 
but the conventional ones run into difficulties when the numbers n and their expected 
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value E(n) are large. The number of steps needed to compute p,, generally increases 
with increasing n, as does the number of terms to be summed in evaluating Q;. Inac- 
curacy in the individual values of pn introduces large relative errors into the 
complementary cumulative probabilities Q: = 1 - Q; when n far exceeds E(n). 

In this paper we shall present methods for computing the tail probabilities that 
become the more efficient, the greater the numbers n and E(n), and do not require 
computing the individual probabilities p,, and summing them. The application to the 
output of a multiplicative process may be regarded as exemplifying methods that are 
worthy of consideration whenever the p.g.f. h(z) of some integer-valued random 
variable n is known in analytical form and the expected value E(n) and the numbers 
n for which Q; or Q,’ is wanted are large. 

The principal method involves suitably deforming the contour of integration in the 
inversion integrals 

Q, = J' 
z-“/z(z) dz 

=- 1 -z 2ni’ (1.9) 

where C- and C+ initially are closed contours enclosing the origin, but no 
singularities of the p.g.f. h(z); Ct encloses the point z = 1, C- does not; and the 
contours are traversed counterclockwise. The integration along the deformed contour 
is evaluated by the trapezoidal rule. The use of numerical contour integration to 
evaluate cumulative distributions of continuous random variables was treated in [3], 
and a comment on that paper described its application to cumulative distributions of 
integer-valued random variables [4]. 

Besides evaluating the tail probabilities Q; and Q,’ by numerical contour 
integration, we shall show how to approximate them by isolating the contributions to 
the integrals in (1.9) and (1.10) at the saddlepoints of the integrand. Daniels [5] first 
demonstrated saddlepoint approximations to probability distributions { p,} of integer- 
valued random variables. Related to this method is the use of tilted distributions, 
which was originated by Cramer [6], described by Khinchin [7], and utilized by 
Blackwell and Hodges [8], Bahadur and Rao [9], Petrov [lo], and 
Barndorff-Nielsen and Cox [ 1 l] to calculate cumulative distributions of sums of 
independent random variables; see also Van Trees [ 121. A different saddlepoint 
approximation, which avoids the use of the error-function integral, was utilized for 
tail probabilities of integer-valued random variables in [ 131. In the present problem 
the contributions of saddlepoints above and below the real axis in the z-plane must be 
included in addition to that of the principal one lying on the real axis. We shall 
evaluate the latter by means of a uniform asymptotic expansion [ 141; the 
contributions of the off-axis saddlepoints are evaluated by the method of [ 131. 

The contour-integral method and its approximations apply whenever the p.g.f. h(z) 
of the output distribution is known in analytical form, but for the sake of definiteness 
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we shall restrict our discussion to distributions arising when the light ejecting the 
primary electrons is incoherent light with various simple spectral densities, and the 
number of secondary electrons ejected by each primary electron is governed by a 
Poisson distribution. A by-product of our study is an illustration of how the output 
distribution depends on the product of the bandwidth W of the incident light and the 
duration T of the counting interval. 

We first review methods of computing the probabilities p, that follow most directly 
from (1.4) and are useful when the numbers n and E(n) are small, in order to 
generate accurate values of those probabilities for comparison with the contour- 
integration and other methods to be presented later. Recurrence methods similar to 
those we are about to describe, but formulated otherwise, have been utilized for 
multistage photomultipliers by Laths [ 151 and Matsuo et al. [ 161. Our present aim is 
to compare methods and not to develop a theory of photomultiplier performance, and 
we therefore limit our considerations to a single stage of photomultiplication, 
adopting a simple model of the physical processes involved, and neglecting dark 
current. 

(b) General Multiplicative Processes 

From the p.g.f. h(z) the probabilities p,, can be determined by 

PO = w), 

p =’ d”&) 
(1.11) 

n n! dz” n > 0. 

By means of a formula based on Bell polynomials [ 14, p. 19981, the probability p, 
can be written as 

Pn= ‘+ .fkHn k, 
kz, ’ 

n> 1, (1.12) 

where 

fk=-‘$f(l, / 9 d”)=P:‘, 
z=g(o) 

and the H,,, are determined by the recurrent relation 

H (S) 
ntl,l=P”tI~ 

H n+l,k+l = 1 -m 
n+l 

p;:,-,,,H,,,+k, 

(1.13) 

(1.14) 

in terms of the distribution of the number of secondaries per primary photoelectron. 
In particular 

H,,, = p~“‘“/n!. (1.15) 
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(c) Poisson-Distributed Secondaries 

When, as we assume henceforth, the distribution of the number of secondaries per 
primary electron has the Poisson form with mean G, which is called the gain, 

pts) = G” ePG/n!, n (1.16) 

the probabilities p,, that the total number of secondaries equals n form what is called 
a compound or generalized Poisson distribution [ 171 and are given by 

p,, = 5 l7,JkG)” eekG/n!. 
k=O 

(1.17) 

The p.g.f. of the output distribution is now 

h(z) = f(et(‘-I)). 

It follows from Problem 26 of Riordan’s book [ 18, p. 471 that 

(1.18) 

H,,, = G”,!?(n, k) epkG (1.19) 

in terms of the modified Stirling numbers of the second kind, $(n, k), which obey the 
recurrent relation 

S(1, l)= 1, S(k, n) = 0, k > n, 

s(n + 1, k) = [&z, k - 1) + k&z, k)]/(n t 1). 
(1.20) 

In terms of the ordinary Stirling numbers of the second kind these are defined by 

S(n, k) = S(n, k)/n! (1.21) 

and are introduced in order to avoid overflow in machine computation. Recurrent 
relations for ,!?(n, k) are given in [ 181. In particular 

S(n, 1) = Qz, n) = l/n!. (1.22) 

As a result the probabilities sought are 

p. = f(e-‘), 

p,, = G” 5 f,S(n, k) eekG, 
k=l 

(1.23) 
n > 0, 

in which the derivatives fk of the p.g.f. f(z) of the primary distribution are evaluated 
at z=e -‘. This enables computation of the probabilities p,, by a strictly finite 
procedure, in contrast to the infinite series in (1.17). 

When the number n is large, however, the great number of iterated computations 
required by (1.21)-( 1.23) may introduce substantial errors due to rounding off. 
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Greater accuracy can be achieved for large n by utilizing (1.17), replacing n! by 
Stirling’s approximation [ 191 and writing it as 

(1.24) 

where 

fW = exp ( & - & +O(z-5) . 1 
(1.25) 

The summation was halted when the terms in (1.24) became insignificant. 

II. PRIMARIES EJECTED BY INCOHERENT LIGHT 

(a) Arbitrary Spectral Density 

The incident light is assumed to be quasimonochromatic, linearly polarized, 
incoherent light with a spectral density Q(w); the angular frequency w is measured 
from the central angular frequency of the light. Because the field of the light is a 
Gaussian random process, the probability generating function of the distribution of 
primary photoelectrons is 

f(z)= fi [l-N&z- 1)]-‘9 
r=1 

(2.1) 

where N, is the mean number of primary electrons 120-221. As shown in [20, 22) the 
1, are the eigenvalues of the integral equation 

G(t) = f 4(t - s> P(S) ds, 
JO 

whose kernel 

Q(r) = jyrn G(w) eiwT do/2n, (2.3) 

the temporal coherence function of the light field, is the Fourier transform of the 
spectral density Q(w); (0, T) is the interval during which electrons are counted. We 
assume that the spectral density @(co) is normalized so that 
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which requires that 

T+(O) = Tim @p(o) do/2z = 1. 
-cc 

In terms of the Fredholm determinant 

D(u)= fi (1 +A+) 
r=1 

associated with the integral equation (2.2), the p.g.f. is 

(2.5 1 

(2.6) 

f(z)= [D(N,(l -z))]-‘= n [l -IZ,N,(z- 1)]-‘. (2.7) 

By introducing the residue expansion of [D(U)] -i we can write this p.g.f. as 

4 
ar = D’(-l/A,) =!!,(I-i)-‘, 

r 

N&r 
vr= 1 +N,L,’ 

D’(u) = dD/du. W-9 

Because (1.23) is linear in the derivativesf,, the probabilities p, can be considered 
as a weighted sum of probabilities arising from the individual terms of (2.8), 

Pn = C arPr,,, 
r=l 

(2.9) 

with 

P,,, = P,,,G” jj k! S(n, k) l;, 
k=l 

n > 0, 

1 -v, 
1 -vV,e-” 

Writing 

Pr,, = Pr,o ,f T!t% 
k=l 

(2.10) 

(2.11) 
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and using the recurrent relation (1.20) for the modified Stirling numbers, we find a 
recurrent relation for the terms of (2.1 l), 

T(r) 
n+l,k = y$ (t, TX:-, + T::>, T’,“, = Gr I.* (2.12) 

The sum in (2.9) is stopped when the terms decrease to the point of insignificance. 

(b) Lorentz Spectral Density 

For incident light with a Lorentz spectral density, whose normalized form is 

(2.13) 

the p.g.f. f(z) of the primary distribution is given by [23] 

f(z) = em [cash w + i(w/m + m/w) sinh w] -‘, 

w2 = m* + 2N,m(l- z), m =,uT. 
(2.14) 

We denote the square bracket by M(z) and write it in terms of modified spherical 
Bessel functions i,(w) obeying the recurrent relation 

in+I(w)= i,-I(W)--+in(w) 

with 

whereupon 

i-,(w) = (cash w)/w, i,,(w) = (sinh w)/w, 

M(z)=~i,(w)+w I+& i-l(w)+&i-2(W) 
( ) 

(2.15) 

(2.16) 

Then following Bedard [21] we use 

&M(z)= - 
(?)‘[T ( ‘1. 

i,(w) + w 1 + 2m I+,(w> + & inp2(w> 
1 

= (- 1 )“M”(Z), (2.17) 

which defines M,(z), in Leibnitz’s formula 

(2.18) 
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to determine a recurrent relation for the derivatives f, of f(z), 

f, = g; (-l)“-r+l ( ; ) f,~n-r(zYwz)~ 
z = emG, fo=f(z), w = [m’ + 2N,m( 1 - z)] 1’2. 

(2.19) 

The probability p,, of counting II secondary electrons during (0, Z) when the 
incident light has a Lorentz spectral density is then calculated by substituting from 
(2.19) into (1.23). Alternatively, one can calculate the probabilities IJk in (1.17) and 
(1.24) by Bidard’s method [21], which corresponds to taking z = 0 in (2.14)-(2.19). 

(c) Negative Binomial Primary Distribution 

The primary electron distribution can often be closely approximated by the 
negative binomial distribution 

n,=$$l -v)~v? v= N:M, k=O, 1,2 ,..., 
P 

(M),=M(M+l)+4+k-l)==(~;)k), 

(2.20) 

in which the number M of degrees of freedom is given by 

(2.21) 

in terms of the temporal coherence function d(r) of the incident light [20,24]. For the 
Lorentz spectral density in (2.13) 

$(r) = T-’ e-ulrl (2.22) 

and 

M = 2m2/(2m - 1 + eP2”), m=puT, (2.23) 

M+l asm+O,M-tmasm+co.ForM~l, 

and M roughly equals the time-bandwidth product WT, where W is the equivalent 
bandwidth 

W = 1” @b(o) dc42lr 2 lrn [@(co)]’ dw/2x 
-co Ii --co (2.25) 
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of the light. The p.g.f. of this negative binomial distribution is 

f(z)= (p-), 

and the derivatives of the p.g.f. f(z) in (1.23) are 

(2.26) 

(2.27) 

Again using the recurrent relation (1.20) with (1.23) we can write the probability p, 
of n secondaries as 

p,, = p. T- T 
k:l 

n.k, PO =.fw (2.28) 

in which the coefficients T,,, obey the recurrent relation 

T - n+Lk-&[(M+k- l)t&,k-l +kT,,,], 

(= VCG 
l--e-” 

T,, , = MG& 

(2.29) 

(d) The Neyman Type-A Distribution 

When we pass to the limit M-r co, keeping the mean number N, of primary 
electrons fixed, the distribution of primary electrons turns into the Poisson 
distribution, 

for which the p.g.f. is 

Dk = Ni exp(-N&/k!, (2.30) 

f(z) = ev[N,(z - 111; (2.3 1) 

and the distribution of secondaries becomes by (1.18) the Neyman Type-A 
distribution [2], whose p.g.f. is 

h(z) = exp[N,(eG’L-‘J - l)] (2.32) 

and for which the probabilities are most simply computed by Neyman’s recurrent 
relation [25] 

P k+l= 
N,Ge-’ + G’ 

k + 1 ryQ r! Pk-r’ (2.33) 

or, for n % 1, by (1.24)-(1.25) and (2.30). 
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In order to illustrate the transition to the Neyman Type-A distribution with 
increasing values of 44, we have plotted the probabilities p,,, n > 0, in Figs. 1 and 2 
for both the negative binomial primary distribution (solid lines) and the distribution 
arising from light with a Lorentz spectral density (dashed lines), the equivalent value 
of m having been determined by solving (2.23). Where both distributions are not 
shown, their graphs fell too close to be distinguished. The curves marked “co” 
represent the Neyman Type-A distribution. In Fig. 1, N, = 2, G = 6; in Fig. 2, 
N, = 6, G = 2. The long tails of the negative binomial distribution for small values of 
M carry over to the distribution of the number n of secondary electrons. The negative 
binomial distribution is seen, furthermore, to yield a close approximation to the 
distribution arising from light with a Lorentz spectral density over the entire range 
1 < A4 < ro, the two coinciding at the extremes M = 1 and M = co, except that the 
latter drops off to zero slightly less rapidly than the former. 

The probabilities p,, having been computed by these methods, the cumulative 
probability Q; is computed by the summation in (1.5), and its complement Q,’ is 
determined from 1 - Q;. When the numbers n are large, however, Q; is close to 1, 

FIG. 1. Probability distributions (p,} of secondary electrons when the primary electrons have 
negative binomial distributions (solid lines) or arise from incident light with a Lorentz spectral density 
(dashed lines); N, = 2, G = 6. The curves are indexed by the number M of degrees of freedom. The 
curve marked “co” represents the Neyman Type-A distribution. 

581/54/2-l 
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FIG. 2. Probability distributions (p,,} of secondary electrons when the primary electrons have 
negative binomial distributions (solid lines) or arise from incident light with a Lorentz spectral density 
(dashed lines); N, = 6, G = 2. The curves are indexed by the number M of degrees of freedom. The 
curve marked “co” represents the Neyman Type-A distribution. 

and round-off errors corrupting the probabilities p,, introduce large relative errors 
into the tail probability Q,’ . Furthermore, these methods require storage of more and 
more numbers and entail more and more additions and multiplications as n and E(n) 
increase. We therefore turn to methods that enable computation of the tail 
probabilities Q; and Q: directly and are the more efficacious, the larger the mean 
number NP of primaries and the gain G in the multiplicative process. 

III. THE METHOD OF RESIDUES 

By (l.lO), (1.18), and (2.8) the right-hand tail probability Q.’ is 

Q,’ = 2 w~r,n, 
r=1 

(3.1) 
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where 

(3.2) 

with 

h,(z)=(l -u,)/(l -qJ+‘)), (3.3) 

the contour C+ enclosing the origin and the point z = 1, but none of the poles of 
h,(z), which lie at the points 

[r’ = 1 + G-‘(ln 0;’ + 2kni) (3.4) 

for all integers k, --a < k < 00. 
As shown in Appendix A, we can expand the contour C’ into a rectangle at 

infinity, provided that we also enclose each pole t;p’ by a small circle traversed 
clockwise. The integral around the rectangle vanishes, and we are left with the results 
of applying the residue theorem to the integrals around each pole, whereupon 

4 
-“h (z) 

r,n =- 2 ResZZ-*l 
k=-a, z=Sp 

= ,‘-‘(I -ur) 2 %-” 
k=-oo [f’- 1 

O” CT” c - . 
k=, $‘- 1 I 

It is furthermore shown in Appendix A that the error R, incurred by stopping the 
summation in (3.5) at k = K is bounded by 

The factors yn remain bounded and are of order n-1/2 for n * 1. When IZ is large, 
only a few terms contribute significantly to the sum in (3.9, and convergence is 
rapid. 

For the Lorentz spectral density in (2.13), to which we have applied this method, 
the eigenvalues A, are given by 

A,= 2m 
c:i-m2’ 

m=pT, 
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where the c, are the solutions of the transcendental equation 

cot c, = (cp - m2)/2mc,, r = 1, 2,..., 

which can also be written 

c, tan(cJ2) = m, r odd, 

c, cot(cJ2) = -m, r even. 
(3.9) 

The quantity c, lies between (r - 1)~ and rz, and with c, = (r - 1)~ + err we find, for 
r % m/z, 

E, E 2m/m. (3.10) 

The coefficients a, in (2.8), (2.9), and (3.1) are given by [26] 

ar = m -’ em sin c, 
t 

(-I)‘-’ -’ 
sine +c;’ 7 

* I 

which after some algebra can be reduced to 

a, = (-I)‘-’ em&(2 - mA,)/(l + A,). (3.11) 

For large values of r, by (3.11) and (3.8) 

Ia,/ E 4mem/r2n2, (3.12) 

which decreases in proportion to r-’ as r -+ co. This rapid decrease does not set in, 
however, until r exceeds m/n. When m > 1, the coefficients a, for r < m/n are large in 
absolute value; they always alternate in sign. When the number n is of the order of 
E(n) or larger, the convergence of (3.1) is accelerated by the rapid decrease of the 
terms $‘-” in (3.5) with increasing r, but for rr < E(n) many terms of the series must 
be taken when m s 1. Because the terms of (3.1) are of decreasing magnitude and 
alternate in sign, the error is bounded by the last term included in the sum. 

In Table I we compare the results of using (3.1) and (3.5) with those obtained by 
summing the probabilities calculated by (1.23) with (2.19) in double precision. The 
column headed “last increment” lists the last term added into the sum in (3.1). We 
took m = 4.4365821, corresponding to M = 5 in (2.23), and forty terms of (3.1) were 
summed. For these we found 

Q,’ = $ ar= 1.046101 
r=1 

instead of 1. It is seen that the error incurred by the residue series decreases with 
increasing n, and does so the faster, the smaller the gain G. 
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TABLE I 

Performance of Residue Series for Q.’ (40 Terms) 
Lorentz Spectral Density, m = 4.4365821 

Residue Last 
n series Exact increment 

Residue Last 
n series Exact increment 

N,=5, G=20 

20 0.940032 0.939034 2.20(-3) 
40 0.842027 0.842012 2.40(-5) 
60 0.710186 0.710182 3.45(-7) 
80 0.567215 0.567213 6.71(-9) 

100 0.433256 0.433255 1.25(-10) 

N,=20, G=5 

20 0.991725 0.991717 6.38(-6) 
40 0.928487 0.928483 3.60(-10) 
60 0.785282 0.785280 2.03(-14) 
80 0.602037 0.602037 1.14(-18) 

100 0.428268 0.428268 6.43(-23) 

When the p.g.f. f(z) of the primary electrons can be approximated as in (2.26) for 
integral values of M, the p.g.f. 

h(z) = (3.13) 

possesses a vertical row of poles of order M at the points 

&= 1 + G-‘(ln zl-i + 2krci), -a<k<co. (3.14) 

Expanding the contour of integration across this row of poles and applying the 
residue theorem as before yields for the complementary cumulative probability 

. (3.15) 
2 = Sk 

It is shown in Appendix B that this can be written as 

(3.16) 

with 

(1 - C,‘)“, (3.17) 

(n),=n(n+l)~~~(n+s-l), (3.18) 

and the coefficients ci”) are tabulated in Table II. The manner of calculating these 
coefficients is given i; Appendix B. Again the symmetry of the poles about the real 
axis permits carrying the summation from k = 0 to co and replacing the terms with 
k > 0 by twice their real parts. 
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TABLE II 

Coeffkients uI”’ in (3.16) 

‘44 0 

1 1 

2 1 

3 1 

4 I 

5 1 

6 1 

1 1 

8 1 

9 1 

10 I 

11 I 

12 1 

1 2 3 4 5 6 7 8 9 10 11 

1 

3 

2 
1 

11 
2 

16 

25 35 - - 
12 12 

137 15 

. 60 4 

49 203 - 
20 45 

363 469 

140 90 

761 29531 

28 5040 

7129 6515 

252 1008 

7381 177133 

2520 25200 

83711 190553 

21720 25200 

1 

5 

T 

17 

4 

49 - 
8 

967 

120 

801 

80 

4523 

378 

84095 

6048 

103344293 

1 

3 1 
35 7 
16 2 

28 23 ’ - 
3 3 

1069 27 

xi-- 2 

285 3013 -- 
16 144 

341693 8591 - - 
1512 288 

1254429 242537 

6531840 45360 6048 

1 

4 1 

39 9 
- 

4 T 
1 

75 145 
- 5 1 

4 12 

7513 605 44 11 
240---- 24 -- 3 2 1 

1961 10831 
40 240 

33+6 1 

Table III compares the results of this residue series with the exact probabilities for 
M = 5 and the same parameters as in Table I. The column labeled “Num” lists the 
maximum value of k in Eq. (3.16), in which the summation was stopped when the 
ratio of the absolute value of the last term to that of the sum fell below 10W6. This is 
of the order of magnitude of the discrepancy between the exact values, computed by 
(2.28)-(2.29), and those computed by (3.16). As is to be expected from (3.6), the 
number of terms to be summed decreases with increasing n. The column of Table III 
headed “Single term” lists the contribution of the pole 4, on the real axis alone: for n 
greater than E(n) it is seen to provide an accurate approximation to the right-hand 
tail probability Q,+ . 
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TABLE III 

Performance of Residue Series (3.16) for Q: 
Negative Binomial Primary Distribution (M = 5) 

n Single term Residue series Num Exact 

N,=5, G=20 

20 0.932417 0.955457 4 0.955457 
40 0.833080 0.873738 3 0.873737 
60 0.705184 0.749536 2 0.749535 
80 0.568492 0.601921 2 0.601920 

100 0.439202 0.439582 2 0.439582 
150 0.198436 0.198413 2 0.198413 
200 0.0763843 0.0763844 2 0.0763845 

N,=20, G=5 

20 0.983799 0.983798 1 0.983799 
40 0.911155 0.911153 1 0.911155 
60 0.775914 0.775912 1 0.775914 
80 0.608256 0.608256 1 0.608258 

100 0.443583 0.44358 1 1 0.443583 
150 0.157956 0.157956 1 0.157956 
200 0.0440489 0.0440489 1 0.0440489 

IV. NUMERICAL CONTOUR INTEGRATION 

The method of residues in Section III cannot be applied to the Neyman Type-A 
distribution, whose p.g.f. has no poles, nor to the distribution of secondaries arising 
from primaries with a negative binomial distribution for a nonintegral value of M, for 
which the singularities are branch points. For light with a spectral density such as the 
Lorentz in (2.13), furthermore, (3.1) requires a great many terms when WT 9 1 and 
n e E(n) in order to determine Q; = 1 - Q,’ with usefully high relative accuracy. We 
therefore resort to computing the tail probabilities Q; and Q,’ by evaluating the 
contour integrals in (1.9) and (1.10) numerically. 

For the sake of efficiency one would like to integrate along that contour C on 
which the magnitude of the integrand decreases as rapidly as possible from its 
maximum value, which occurs for z real and positive. Such a path is known as the 
path of steepest descent [27]. With the integrand written in the form 

exp[ Y(z)] = * z-“h(z)/(z - I), (4.1) 

the imaginary part Im P(z) of the “phase” Y(z) is constant along this path. The path 
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of steepest descent furthermore passes through the saddlepoints of the integrand, 
which are the points at which 

~=~ln&z)-a- 
1 

-= 0. 
z-l (4.2) 

If one plots the magnitude of the integrand exp[ Y(X)] for values of z =x on the 
positive real axis, one finds that it is a convex function with one minimum at a point 
x; in 0 < x < 1 and another at a point xt in 1 < x < yO, where y0 is the leftmost 
singularity of h(z) on the real axis. These points z =x0’ are roots of (4.2) and the 
principal saddlepoints of the integrand. When the contour of integration passes 
vertically through z = xi or z = x,+, the magnitude of the integrand, maximum at the 
saddlepoint, decreases most rapidly on either side. 

Figure 3 exhibits typical paths of steepest descent for (1.9) and (1.10) when these 
are used to calculate the Neyman Type-A distribution, whose p.g.f. h(z) is given in 
(2.32). They are drawn for N, = G = 10. Only the curves in the upper half-plane are 
illustrated; the portions in the lower half-plane are their mirror images. The left-hand 
set of curves refers to Q; for n = 75, the right-hand set to Q,’ for n = 150. Small 

2: 

2c 

1.5 

Y 

1.0 

0.5 

1- 

I- 

FIG. 3. Paths of steepest descent of the integrands in (1.7) and (1.8) when the cumulative Neyman 
Type-A distribution is being calculated for N, = G = 10. The left-hand curve is for n = 75, the right- 
hand for n = 150. The small circles indicate the saddlepoints of the integrand. 
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circles indicate the saddlepoints. The paths of steepest descent go off to infinity along 
asymptotes at values of y = Im z equal to odd multiples of n/G. 

Utilizing the path of steepest descent would require computing a number of 
saddlepoints z,, by solving (4.2) and the tracing the branch of the path of steepest 
descent passing through each, a cumbersome procedure. We therefore instead chose 
as our contour of integration a vertical straight line passing through the saddlepoint 
xi for Q; and through xi for Q,‘. This line passes close to the saddlepoints of the 
integrand lying above and below the real axis. (The advantages of integrating along a 
path passing through or near a string of saddlepoints were pointed out by Lugannani 
and Rice [28].) 

The saddlepoints x; and xi on the real axis can most expeditiously be found by 
solving (4.2) by Newton’s method, starting with an initial trial value just to the left of 
z = 1 for xi and just to the right of z = 1 for x0’; at each stage one replaces the trial 
value x6 by 

x; + x; - !P’ (xA)/ !P” (x6), (4.3) 

TABLE IV 

Q;: Neyman Type-A Distribution 
Numerical Contour Integration 

Number Result of 
n of steps YO integration Exact 

25 37 
74 

148 

loo 36 
71 

141 

175 36 
71 

141 

25 41 
82 

164 

100 30 
60 

120 

175 25 
50 
99 

N,=5, G=20 

1.687 3.5527190(-2) 
1.687 3.5523618(-2) 
1.687 3.5523618(-2) 3.5523618(-2) 

0.655 1 0.52720529 
0.6460 0.52698250 
0.6415 0.52698245 0.52698245 

0.5099 l-6.3492573(-2) 
0.5029 l-6.3492302(-2) 
0.4993 l-6.3492302(-2) l-6.3492302(-2) 

N,=20, G=5 

2.856 9.3933963(-5) 
2.856 9.3933799(-5) 
2.856 9.3933799(-5) 9.3933799(-5) 

0.9178 0.51061370 
0.9178 0.51045010 
0.9178 0.5 1045007 0.5 1045007 

0.7618 I-2.983305 I(-3) 
0.7618 l-2.9833045(-3) 
0.7542 l-2.9833045(-3) l-2.9833046(-3) 
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with Y’ the first and Y” the second derivative of the phase P(x); see (4.1). Along a 
vertical contour through xi or x0’ the magnitude of the integrand in (1.9) or (1.10) 
decreases most rapidly. For n < E(n) it is most expeditious to evaluate Q; in (1.9) 
by deforming the contour into a straight line through the left-hand saddlepoint xi; 
for n > E(n) one evaluates Q,’ by (1.10) and deforms the contour into a straight line 
through the right-hand saddlepoint xi. 

For reasons discussed in [29] the trapezoidal rule is recommended for infinite 
integrals of analytic functions. For z = x0 + iy in the neighborhood of the saddlepoint 
x,, = xb or x{ the integrand has approximately a Gaussian dependence dependence 
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integration with values of A successively halved until the value of the integral ceases 
changing significantly [ 3,291. 

After the initial descent, the integrand in (1.9) and (1.10) may oscillate. The 
magnitude of these oscillations is measured by exp[Re Y(z)], and the integration 
should continue until this magnitude is sufficiently small. The truncation error 8’ 
incurred by halting the integration at a particular value y, of y is bounded by 

< 71-l mya” Ih(xO + &)I j” (xi + y*)-“‘* dyly 
YO 

< ~l-‘r~‘~-*‘y;* myax I/2(x0 + iy)l/(n - 2), 

where r0 = (xi + yi)r’*. 

(4.5) 

FIG. 4. Cumulative distributions of the number of secondary electrons when the primary electrons 
have a negative binomial distribution; N, = 5, G = 20. The curves are indexed by the number M of 
degrees of freedom, the curve marked “0~” representing the Neyman Type-A distribution. The small 
circles denote values of the cumulative distribution when the incident light has a Lorentz spectral density 
with the same number of degrees of freedom. 
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For the Neyman Type-A distribution, 

max ]h(xO -t iy)] = exp]NP(eG’“O-l’ - l)] 
Y 

and for that arising from a negative binomial primary distribution, by (2.26) and 
(1.18), 

rn? ] h(x, + iy)] = (1 - v)“‘[ 1 - u exp G(x,, - l)] -M. 

The final bracket is positive because the saddlepoint x0 lies to the left of the leftmost 
pole of h(z) as given by (3.14) with k = 0. 

Tables IV and V show results of our computation of the Neyman Type-A 
distribution and of that arising from a negative binomial primary distribution with 
M = 5. The summations were halted when the ratio of the bound on the truncation 
error, as given by (4.5), to the computed probability fell below lo-‘. The column 
headed “Exact” was computed by summing probabilities p,, calculated in double 
precision from (1.17) with (2.30) and (2.20), respectively, and because of round-off 

09999 

09995 
0.999 
0.996 

0.995 
099 
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0.9 
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Qn 
0.4 

0.2 

0.1 

FIG. 5. Cumulative distributions of the number of secondary electrons when the primary electrons 
have a negative binomial distribution; N, = 20, G = 5. The curves are indexed by the number M of 
degrees of freedom, the curve marked “co” representing the Neyman Type-A distribution. The small 
circles denote values of the cumulative distribution when the incident light has a Lorentz spectral density 
with the same number of degrees of freedom. 
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error in our computer, which even in double precision carries only about sixteen 
decimal digits, the numerical integrations had to be carried out in double precision as 
well. The numerical contour integration in these examples yielded the tail 
probabilities to six significant figures with fewer than two hundred steps. 

In Figs. 4 and 5 we exhibit the cumulative distribution for the parameters used in 
Tables IV and V: N, = 5, G = 20 and N, = 20, G = 5, respectively, and for 
M = 1, 3, 5, 10, and co, the mean N,G = 100 remaining fixed. The figures illustrate 
the manner in which the Neyman Type-A distribution (M = co) is approached with 
increasing M. Figures 6 and 7 exhibit the same cumulative distributions, but for 
NP = 18, G = 72 and NP = 72, G = 18, respectively, the mean NP G = 1296 remaining 
fixed. Comparison with Figs. 4 and 5 shows the approach of the Neyman Type-A 
distribution to normality as the mean N,,G increases, as predicted by Teich [2]. The 
distributions arising from the negative binomial primary distribution manifest no such 
progression toward normality. 

The small circles in Figs. 4 to 7 mark the values of the cumulative distribution of 
secondary electrons arising from incident light with a Lorentz spectral density; these 
were computed by the residue series in Section III. For a few sets of values the 

n 

FIG. 6. Cumulative distributions of the number of secondary electrons when the primary electrons 
have a negative binomial distribution; N, = 18, G = 72. The curves are indexed by the number M of 
degrees of freedom, the curve marked “co” representing the Neyman Type-A distribution. The small 
circles denote values of the cumulative distribution when the incident light has a Lorentz spectral density 
with the same number of degrees of freedom. 
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FIG. 7. Cumulative distributions of the number of secondary electrons when the primary electrons 
have a negative binomial distribution; N, = 72, G = 18. The curves are indexed by the number M of 
degrees of freedom, the curve marked “co” representing the Neyman Type-A distribution. The small 
circles denote values of the cumulative distribution when the incident light has a Lorentz spectral density 
with the same number of degrees of freedom. 

numerical integration method of this section was also carried out, and results agreed. 
The tails of this distribution do not drop off to zero so rapidly as for the approx- 
imating distribution calculated from the negative binomial primary distribution with 
the same number M of degrees of freedom, as specified by (2.23). The latter 
corresponds to a spectral density that cuts off sharply at a frequency deviation of the 
order of W = M/T from the central frequency of the light; the Lorentz spectrum, on 
the other hand, has very long tails. Because very large frequency deviations are much 
more prevalent in the latter, there are more opportunities for large count deviations to 
be accumulated, and numbers n much larger or much smaller than the mean E(n) are 
therefore more probable than with primaries having a negative binomial distribution. 

V. SADDLEPOINT APPROXIMATIONS 

The principal contributions to the integrals in (1.9) and (l.lO), after the contours 
have been deformed into the paths of steepest descent as discussed in Section IV, 
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come from the neighborhood of each saddlepoint zk ; these saddlepoints are the roots 
of (4.2). The integrals can then be approximated by 

Q,’ z Q;(O) + 2Re 2 [2xYy”(zk)]-“* exp[Y(zk)](l + Ck), (5.1) 
k=l 

where Qi(“’ represents the contribution of the branch of the path of steepest descent 
passing through a saddlepoint on the real axis; z, , z2 ,..., are saddlepoints lying above 
the real axis, and C, is a complex correction term given by 

c, = f(K4 - $c:), 

Km = Y(*‘(Zk)/[ Y(*yZk)lm’*, Y(rn’(Z) = drnY(z)/dzrn. 
(5.2) 

In (5.1) we must take Re[ Y”(zk)] “’ > 0. Since the contributions of the complex 
saddlepoints are usually much smaller than Q, *(O), it is often unnecessary to include 
the correction C,. Occasionally, however, C, may have a strong influence if the prin- 
cipal term that (1 + C,) multiplies has a phase close to &7t/2, so that without the 
factor (1 + C,) its real part would be small. The saddlepoints zk must be determined 
with high precision. 

One method of approximating the on-axis term Q.‘(O) is to use the counterpart of 
- - (5.1~(5.2) [ 131, 

Q;(O) z [2~cY~*‘(x,)] -“* exp Y(x,) 

1 

i [ 

Yy’4’(xo) 5 [ Yyx,)] 2 
x l +s [Yy’*‘(x,)]*-T [Yy’2’(xo)J3 11 

with x0 =x0 for Q;(O) and x0 =x0+ for Q,‘(O), where x; and x0’ are the real-axis 
saddlepoints defined in Section IV. The approximation is the more accurate, the 
farther the value of n lies from the mean E(n) of the distribution. 

For n near E(n) greater accuracy is achieved by utilizing the first two terms of a 
uniform asymptotic expansion [ 14,301. It is based on the modified phase 

P(z) = In h(z) - n In z, 

of which a saddlepoint Z. is the root of 

Pyz,2#+ 
Z 

(5.4) 

This saddlepoint z = Z. can also be quickly computed by Newton’s method. There is 
a single such saddlepoint on the real axis, 0 < Z. < yo, where y. is the leftmost 
singularity of h(z) on the real axis. At the point x = 1,, Y(x) is minimum. 

The contour of integration is displaced from the path of steepest descent of the 
entire integrand so that it coincides with that of the function exp Y(z), which lies 
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nearby. Then the first two terms of the uniform asymptotic expansion 1301 approx- 
imate the tail probabilities as 

n > E(n): Q;(O) 

n < E(n): Q;(O) I 
Zerfc[-2!&Zo)]1’2 + (I(Zo- lI~‘[27c*(Zo)]-“2 

- j[+~!P(.f~)]-~‘~} exp[!@,)], (5.5) 

in which primes indicate differentiation and 

erfc u = (27r-“2 ji*: exp(-t2/2) dt 
x 

is the error-function integral. Corrections of higher order are listed in [30]. For 
n = E(n) = NP G, x0 = 1 and this approximation breaks down, but by Eq. (17) of [30] 
we can write for n = E(n) = fi 

Q;(“)g f - ~[271~k”(1)]-‘/2~(1)/~“(1); (5.6) 

further terms are to be found in [30]. Thus for the Neyman Type-A distribution 

Q;(O) 2 + - + [27cfi(1’3 + l)] -“2 (G) 

and for the distribution of secondaries generated by primaries with a negative 
binomial distribution 

v= N,/M. 

In Tables VI and VII we compare the results of the saddlepoint approximations 
with the exact values of the cumulative distribution; Table VI refers to the Neyman 
Type-A distribution, Table VII to that arising from the negative binomial primary 
distribution. The column marked “UAE” was computed from (5.5) or-for 
n = N,G-from (5.6). The “off-axis contribution” is the summation in (5.1) over the 
four nearest complex saddlepoints zi , z2, zj, and zq, including the correction C,, 
which amounted to a few percent. This contribution is the larger, the smaller n; for 
n > E(n) it is hardly significant. The smaller the gain G, the farther the complex 
saddlepoints lie from the real axis, and the less they contribute to the total probability 
Q; or Q,‘. The column labeled “Crude S-P” lists the value of Q:(O) computed from 
(5.3), omitting the factor in brackets. This is the most simply calculated of approx- 
imations to these probabilities and is often adequate when IZ lies far in the tails of the 
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TABLE VI 

Saddlepoint Approximations 
Q;: Neyman Type-A 

Off-axis 
n UAE contribution Total Exact Crude S-P 

25 3.14560(-2) 
50 0.130576 

100 0.527499 
150 0.85773 1 
200 l-2.50472(-2) 

250 1.98051(-5) 
500 1.81082(-3) 
750 2.9858 I(-2) 

1000 0.168343 
1500 0.752654 
2000 l-1.58622(-2) 

N,=5, G=20 

4.09137(-3) 3.55474(-2) 
9.5 1063(-6) 0.130585 

-5.51718(A) 0.526947 
3.01480(-5) 0.857762 
9.23185(-7) l-2.50463(-2) 

N,= 18, G=72 

-1.71780(-6) 1.80873(-5) 
1.81503(-5) 1.82897(-3) 
5.45979(-5) 2.99127(-2) 

-2.72697(A) 0.168070 
-8.41239(-5) 0.752570 
-2.85533(-7) l-1.58625(-2) 

3.55236(-2) 
0.130600 
0.526982 
0.857777 

l-2.5043 l(-2) 

1.80638(-5) 
1.82849(-3) 
2.99100(-2) 
0.168064 
0.752567 

l-1.58627(-2) 

3.289(-2) 
0.1324 
0.5 103 
0.8626 

l-2.478(-2) 

2.022(-5) 
1.826(-3) 
2.986(-2) 
0.1657 
0.7648 

l-1.571(-2) 

TABLE VII 

Saddlepoint Approximations 
Q;: Distribution Arising from Negative Binomial, M = 5 

Off-axis 
n UAE contribution Total Exact Crude S-P 

25 8.87698(-l) 
50 0.228548 

100 0.560734 
150 0.801492 
200 l-7.64312(-2) 

250 1.50326(-2) 
500 8.17995(-2) 
750 0.208630 

1000 0.369655 
1506 0.672094 
2000 0.860206 

N,=5, G=20 

8.93627(-3) 9.77061(-2) 
1.32791(-3) 0.229876 

-3.80191(A) 0.560354 
2.28596(-S) 0.801515 

-l-88311(-7) l-7.64314(-2) 

N,= 18, G=72 

1.09488(-5) 1.50435(-2) 
4.29986(A) 8.13695(-2) 

4.65397(-4) 0.209096 
-2.76864(A) 0.369378 
-3.98353(-5) 0.672054 
-2.67366(-6) 0.860204 

9.75652(-2) 
0.229878 
0.560418 
0.801587 

l-7.63845(-2) 

1.50203(-2) 1.539(-2) 
8.13251(-2) 8.292(-2) 
0.209060 0.2101 
0.369373 0.3692 
0.672103 0.7066 
0.860256 0.8678 

9.260(-2) 
0.2324 
0.6189 
0.8156 

l-7.375(-2) 

581/54/2-8 
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distribution; N, 9 1, G 3 1. It can be useful, for instance, in initial search for the 
level n yielding a particular value of Q; or Q,‘, as in setting a bias level to attain a 
preassigned false-alarm probability, or “size,” in a hypothesis test. 

SUMMARY 

This paper is concerned with computing the probability distribution of the number 
of secondary electrons produced by a single-stage photomultiplier in a time interval 
(0, r), a problem typical of a number of others associated with multiplicative 
processes. 

When the probability generating functions (p.g.f.‘s) f(z) and g(z) of the numbers 
of primary and secondary electrons, respectively, which are defined by the series (1.2) 
and (1.3), are known in analytic form, the probability p, that the total number of 
secondary electrons will equal n is the coefficient of zn in the power series (1.4) of 
f( g(z)). Furthermore, the cumulative probability Q; defined in (1.5) is the coef- 
ficient of z” in the power series expansion of (1.7). 

We are especially interested in computing Q; and its complement Q,+ of (1.6) by 
evaluating the contour integral (1.9) and its counterpart (1.10) for Q,‘. Three 
methods of calculation are discussed: the method of residues in Section III, numerical 
contour integration in Section IV, and saddlepoint approximation in Section V. First, 
however, expressions for the probabilities p, are developed in Section I for 
calculating comparison values. When f(z) and g(z) are arbitrary probability 
generating functions, pn can be calculated from the series (1.12). This series, which 
seems to be new, consists of a finite number of terms, but the labor of computing it 
increases rapidly with n. Equation (1.12) is the only result here in which the p.g.f. 
g(z) is arbitrary. In all of the remaining results g(z) is assumed to have the form 
exp[G(z - l)] corresponding to a Poisson distribution for the number of secondaries 
per primary electron. Two other series, (1.17) and (1.23), are also given for p,, the 
latter following from (1.12). They are useful when n is small, but can be used at the 
cost of considerable computation if n is not too large. The values of Q; and Q,+ 
listed in our tables as “exact” comparison values have been computed with the help 
of (1.17) or (1.23). 

Most of Section II is concerned with the calculation of the p.g.f. f(z) and its 
derivatives needed in the series (1.17) and (1.23) for p,,. These functions depend on 
the spectral density of the incident light. For an arbitrary spectral density, f(z) can 
be expressed as the series (2.8), and for a Lorentz spectral density it can be expressed 
in the closed form (2.14). For an important class of spectral densities the distribution 
of the primary electrons can be approximated by the negative binomial distribution 
discussed in Section II(c). 

The p.g.f. f(z) corresponding to the negative binomial distribution is given by 
(2.26), which contains two parameters, N, and M; the u in (2.26) is equal to 
N,/(N, + M). Here Np is the average number of primary electrons generated during 
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the interval (0, 7’) and is regarded as given. M is the number of “degrees of freedom” 
given by (2.24) and is roughly equal to the observation time T times the spectral 
bandwidth. When the number M becomes large, the secondary probabilities p, for the 
negative binomial case and for the Lorentz case both tend to a Neyman Type-A 
distribution, as discussed in Section II(d); curves are presented showing the transition 
as M increases. 

The calculations described in Section II are based on the series (1.17) and (1.23) 
and become increasingly laborious as n and E(n) increase, indicating the need for an 
easier way to compute the probabilities when n and E(n) = N,G are large. This leads 
us to study the contour integration methods described in Sections III, IV, and V. It is 
helpful to consider one of the examples used in the discussion of these methods, 
namely, that in which the primary electron distribution is approximated by the 
negative binomial. From the contour integral (1.10) for QJ and (3.13) we get 

Qi=jc+s( 
1-U M dz 

1 - u exp(Gz - G) 
-. 
2ni 

The problem is to evaluate the integral by deforming the path of integration Ct. This 
can be done in several ways. 

One way is to note that initially Ct encloses the poles of the integrand at z = 0 
and z = 1, but no other singularities. Shrinking it until it becomes two small circles 
enclosing z = 0 and z = 1, and evaluating the residues of the integrand, gives 

Q,’ = Residue at z = 0 + Residue at z = 1. 

The residue of the simple pole at z = 1 is equal to 1. The evaluation of the residue of 
the nth-order pole at z = 0 leads to a sum of probabilities pa, in which p, is given by 
either (1.17) or (1.23), depending on how the residue is evaluated. As mentioned 
earlier, these series are useful when n is small, but become laborious when n and E(n) 
are large. 

When the method of residues described in Section III is used to evaluate the 
integral, M is assumed to be an integer, and C ’ is deformed so that it consists of 
small circles around the Mth-order poles of the integrand at z = &, with & given by 
(3.14). Calculation of the residues at these poles leads to the series (3.16), which is 
useful when M is a small integer and requires few terms when n is of the order of 
E(n) or larger. 

In the numerical contour integration method described in Section IV, Q,’ is 
evaluated by applying the trapezoidal rule to the integral obtained by deforming Ct 
into a straight line parallel to the imaginary z-axis. The point at which this path 
crosses the real z-axis is chosen to be at or near the point where the integrand passes 
through a minimum as z moves along the real z-axis, that is, a saddlepoint of the 
integrand. This method is especially useful when IZ is large. 

The saddlepoint approximations discussed in Section V are closely related to the 
numerical-integration method of Section IV. Usually the largest contribution to the 
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integral for Q; or Q,’ comes from the region in the z-plane where the path crosses 
the real axis, say at the saddlepoint x,,. If n is not too near to E(n), this contribution 
can be approximated by (5.3), which involves derivatives of the logarithm p(z) of the 
integrand. This is the “principal” contribution. There may also be significant 
contributions from other saddlepoints, as described in Section V. These approx- 
imations are useful when one desires an idea of how the probabilities vary for large 
values of n. 

APPENDIX A: CONVERGENCE OF RESIDUE SERIES 

We expand the contour C, in (3.2) into a rectangle with vertical sides at x = f co 
and with horizontal sides along the lines z = x f iyK, where 

y, = 27@ + 4)/G, 
(A-1) 

--co<x<co. 

In the course of its expansion the contour crosses the line of poles at 1;:‘, 
-K < k <K, and leaves behind it a little circle surrounding each pole. 

The vertical sides of the rectangle contribute zero to the integral around it because 
of the factor z -” in the integrand. The contributions from the little circles are 
evaluated by the residue theorem as in Section III, and we obtain for (3.2) 

with 

(A.3) 

R,=I+ +I-, (A.4) 

I+ = i 
-~+~yKZ-nh,(z) dz 

7, z- 1 27rl (‘4.5) 
m+iy, 

I- = 
i 

a-b, z-“h,(z) dz 
-=I * 

-a-iy, Z- 1 2ai +’ 

We want to bound the remainder term R,. 
Along the upper side of the rectangle, z = x + iyK, --oo < x < co, 

e’(‘-” = exp[G(x - 1) + 2n(K + f)i] = -eG(x-‘), 

(A-6) 
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and 

h,(z) = 
1 -v, 

1 + v, eG(x- 1) G ’ - ‘r’ 

Hence 

< (1 -VA 
I 
O” dx 

27r -a, Ix- 1 + i&l (x’ + Y;)“‘* 

and since 

we find 

II+ I< 2 j_:, (x2 + y;)-“” dx 
x 

=Qy,. 111:;2ccC2t’dc9 

l-v 
=$YnYP 

(A-7) 

G-W 

(A-9) 

with yn given by (3.7). Thus the remainder term is bounded by 

The same bound applies to the error incurred by cutting off the summation in 
(3.16) at k = -K and k = K, with (1 - v,) replaced by (1 - v)~, as can easily be 
shown by replacing h,(z) in (A.7) with h(z) in (3.13). 

In this way we show that the partial sums in (A.3) converge to the probabilities 
qr,” defined in (3.2) and summed in (3.1). The convergence of the series in (3.1) 
follows from Abel’s criterion [3 11. The series 

Q,' = f a, (A.1 1) 
r=1 

converges to 1 by virtue of (2.8) with z = 1; f(1) = 1 by (2.7). We need only to show 
that for r sufficiently large, the qr., form a monotonely decreasing sequence in r for 
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fixed n. Now by (2.20), (2.26), and (1.17) with u = u,, M = 1, the quantities P,,, 
detined by (2.8) and (2.9) are 

P,,, = (1 - u,) x z$(kG)” emkG/m!. 
k=l 

(A.12) 

The eigenvalues A, of (2.2) and hence the v, defined in (2.8) are arranged in 
descending order, and U, -+ 0 as r -+ co. For some integer rO, v, < 3 for all r > rO, 
whereupon 

and the probabilities (1 - 0,) U: in (A.12) form a monotonely decreasing sequence. 
The probabilities P,,, , therefore, form such a sequence, and so do the probabilities 

Since the series in (A.1 1) converges, and for r > r. the q,,, form a monotonely 
decreasing sequence, the series in (3.1) converges by Abel’s criterion. 

APPENDIX B: RESIDUE EXPANSION 

Dropping the subscript k, we write the terms in (3.15), with (3.13), as 

-1 P’ 
Res= (M- l)! dz”-’ 

(1 - V)M(Z - 0MZ-n 
(1 -eG(r-~))M(z- 1) II z=s 

=- (1 -V)M &-I 
(M- l)! dzM-l [F(z) G(z)1 1 

z=c 

with 

F(Z)= [ 1 -,:w$ G(z)=2 03.2) 

so that 

(‘3.1) 

(B.3) 



COMPUTATION OF COUNTING DISTRIBUTIONS 321 

with 

Starting with Qr, we put into F(z) in (B.2) 

W - C) = Y, 

so that 

(B.4) 

03.5) 

Now we apply the method of Bell polynomials as in (1. 1 l)-( 1.15), except that here 

f(z) = z-M, g(z) = (e’ - 1)/z. P-7) 

The kth derivative of f(z) is 

fk = (-l)k(M),z-(M+k), 

(M)k=M(M+ 1) .*a (M+k- l), 

z = g(0) = 1, 

and as in (1.12), 

@,. = (-l)%-“’ + fkH,,, 
k:, 

with the H,,, obeying the recurrent relation [ 141 

H 
1 -- + gr+l-m Hm,k, 

r+‘*k+‘- r+ 1 m#+k (r-m)! 

H,,l = grlr!, Hr,, = g;lr! 
in which 

gk = -$ dz) 

1 
,=,=z-TT 

Thus we obtain 

Qr = (-l)“Gr--M i (-l)k(k&H,,k 
k=l 

(B-8) 

P-9) 

(B.lO) 

(B.11) 

(B.12) 
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in which the Ii,,, are given by the recurrent relation 

H 
1 6 

H 

r+l,k+l- r+ 1 m:k (r-R!)! (::2-m) 

with special values 

w : 
1 

I,1 = -7 Hr*l = cr; I)! ’ 
Hr., -; -. 

2’r! 

For r, in (B.5) we obtain 

(B. 13) 

(B. 14) 

(0.15) 

It is convenient to write 

whereupon, with 

(B-1 7) 

(B.18) 

we find from (B.3) 
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Res = (’ iUJM Mi’ (-l)‘G-‘T~~ ,-Jr 
r=O 

= t1 - ‘1” Mf’ &+,‘G-jE, <-” 

G j=O ’ “4-l 
(B.19) 

j (n> 
Ej= ((- l)-’ C * (1 - [-I)‘, 

s=o 
(B.20) 

where the coeffkients 

&w = yw) 
J M-l-j, O<j<M-1, (B.2 1) 

are tabulated in Table II. A residue of this form is calculated for each pole < = Ck, 
and the result is the expression (3.16) for the probability Q,‘. 
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